
KARLSRUHE INSTITUTE OF TECHNOLOGY (KIT) – OPERATING SYSTEMS GROUP

Betriebssysteme
08. Practical Synchronization by Example

Prof. Dr.-Ing. Frank Bellosa | WT 2016/2017

KIT – Universität des Landes Baden-Württemberg und

nationales Forschungszentrum in der Helmholtz-Gemeinschaft
www.kit.edu

http://www.kit.edu


Where we ended last lecture
There is often the need for processes or threads to communicate

Message passing facilities provide explicit send and receive functions to
exchange messages
Implicitly shared memory between threads or explicitly shared memory
between processes allows exchanging information by modifying shared
state

When communicating, data races need to be taken into account

Common techniques to synchronizes access to shared data include
Interlocked atomic operations
Spinlocks
Semaphores
Futexes

Classic Synchronization Problems Deadlocks

F. Bellosa – Betriebssysteme WT 2016/2017 2/33



Classic Synchronization Problems

Classic Synchronization Problems Deadlocks
Mutual Exclusion Producer-Consumer Problem Readers-Writers Problem Dining-Philosophers

F. Bellosa – Betriebssysteme WT 2016/2017 3/33



POSIX Thread Synchronization

POSIX provides a number of synchronization constructs that are based
on spinlocks and semaphores described in the last lecture

pthread mutex t provides the functionality of the previously discussed
binary semaphore

Implemented as a futex in Linux

pthread cond t implement condition variables which can be used in
scenarios in which a counting semaphore is needed albeit with easier
usage semantics

pthread rwlock t implements reader-writer-locks in POSIX

Classic Synchronization Problems Deadlocks
Mutual Exclusion Producer-Consumer Problem Readers-Writers Problem Dining-Philosophers

F. Bellosa – Betriebssysteme WT 2016/2017 4/33



Pthread Mutex

Pthread Mutex call Description
pthread mutex init Create and initialize a new mutex
pthread mutex destroy Destroy and free existing mutex
pthread mutex lock Enter critical section or block
pthread mutex trylock Enter critical section or return with error
pthread mutex unlock Leave critical section

Statically allocated mutexes cannot be initialized with
pthread mutex init

Initialize such mutexes with the PTHREAD MUTEX INITIALIZER constant

Mutexes that are allocated on the heap with malloc need to be
destroyed with pthread mutex destroy before freeing them

pthread mutex trylock returns EBUSY if it cannot enter the CS

Classic Synchronization Problems Deadlocks
Mutual Exclusion Producer-Consumer Problem Readers-Writers Problem Dining-Philosophers

F. Bellosa – Betriebssysteme WT 2016/2017 5/33



Pthread Mutex Example

typedef struct {
int count;
pthread_mutex_t lock;

} Count;

void inc( Count *num )
{

pthread_mutex_lock( &num.lock );
num.count++;
pthread_mutex_unlock( &num.lock );

}

void dec( Count *num )
{

pthread_mutex_lock( &num.lock );
num.count++;
pthread_mutex_unlock( &num.lock );

}

int main()
{
Count num;
num.count = 0;
pthread_mutex_init(

&num.lock, NULL );

int i;
#pragma omp parallel for
for( i = 0; i < 42; ++i )
{

inc( &num );
dec( &num );

}
[...]
pthread_mutex_destroy(

&num.lock );
[...]

Classic Synchronization Problems Deadlocks
Mutual Exclusion Producer-Consumer Problem Readers-Writers Problem Dining-Philosophers

F. Bellosa – Betriebssysteme WT 2016/2017 6/33



Producer-Consumer Problem

Consider the producer-consumer problem
(also known as bounded-buffer problem)

A buffer is shared between a producer
and a consumer (here: LIFO)

An integer count keeps track of the number of
currently available (previously produced) items

Every time, the producer produces an item,
it places it in the buffer and increments count

When the buffer is full, the producer needs to
sleep until the consumer consumed an item

When the consumer consumes an item, it removes the item from the buffer
and decrements count

When the buffer is empty, the consumer needs to sleep until the producer
produces an item

Classic Synchronization Problems Deadlocks
Mutual Exclusion Producer-Consumer Problem Readers-Writers Problem Dining-Philosophers

F. Bellosa – Betriebssysteme WT 2016/2017 7a/33

Item

Item

Item

count = 3



Producer-Consumer Problem

Consider the producer-consumer problem
(also known as bounded-buffer problem)

A buffer is shared between a producer
and a consumer (here: LIFO)

An integer count keeps track of the number of
currently available (previously produced) items

Every time, the producer produces an item,
it places it in the buffer and increments count

When the buffer is full, the producer needs to
sleep until the consumer consumed an item

When the consumer consumes an item, it removes the item from the buffer
and decrements count

When the buffer is empty, the consumer needs to sleep until the producer
produces an item

Classic Synchronization Problems Deadlocks
Mutual Exclusion Producer-Consumer Problem Readers-Writers Problem Dining-Philosophers

F. Bellosa – Betriebssysteme WT 2016/2017 7b/33

Item

Item

Item

Item

count = 4



Producer-Consumer Problem

Consider the producer-consumer problem
(also known as bounded-buffer problem)

A buffer is shared between a producer
and a consumer (here: LIFO)

An integer count keeps track of the number of
currently available (previously produced) items

Every time, the producer produces an item,
it places it in the buffer and increments count

When the buffer is full, the producer needs to
sleep until the consumer consumed an item

When the consumer consumes an item, it removes the item from the buffer
and decrements count

When the buffer is empty, the consumer needs to sleep until the producer
produces an item

Classic Synchronization Problems Deadlocks
Mutual Exclusion Producer-Consumer Problem Readers-Writers Problem Dining-Philosophers

F. Bellosa – Betriebssysteme WT 2016/2017 7c/33

Item

Item

Item

Item

count = 4



Producer-Consumer Problem

Consider the producer-consumer problem
(also known as bounded-buffer problem)

A buffer is shared between a producer
and a consumer (here: LIFO)

An integer count keeps track of the number of
currently available (previously produced) items

Every time, the producer produces an item,
it places it in the buffer and increments count

When the buffer is full, the producer needs to
sleep until the consumer consumed an item

When the consumer consumes an item, it removes the item from the buffer
and decrements count

When the buffer is empty, the consumer needs to sleep until the producer
produces an item

Classic Synchronization Problems Deadlocks
Mutual Exclusion Producer-Consumer Problem Readers-Writers Problem Dining-Philosophers

F. Bellosa – Betriebssysteme WT 2016/2017 7d/33

Item

Item

Item

count = 3



Producer-Consumer Problem

Consider the producer-consumer problem
(also known as bounded-buffer problem)

A buffer is shared between a producer
and a consumer (here: LIFO)

An integer count keeps track of the number of
currently available (previously produced) items

Every time, the producer produces an item,
it places it in the buffer and increments count

When the buffer is full, the producer needs to
sleep until the consumer consumed an item

When the consumer consumes an item, it removes the item from the buffer
and decrements count

When the buffer is empty, the consumer needs to sleep until the producer
produces an item

Classic Synchronization Problems Deadlocks
Mutual Exclusion Producer-Consumer Problem Readers-Writers Problem Dining-Philosophers

F. Bellosa – Betriebssysteme WT 2016/2017 7/33

count = 0



Producer-Consumer Problem

void producer()
{

Item newItem;

for(;;) // ever
{

newItem = produce();

if( count == MAX_ITEMS )
sleep();

insert( newItem );
count++;

if( count == 1 )
wake_up( consumer );

}
}

void consumer()
{

Item item;

for(;;) // ever
{

if( count == 0 )
sleep();

item = remove();
count--;

if( count == MAX_ITEMS - 1 )
wake_up( producer );

consume( item );

}
}

Classic Synchronization Problems Deadlocks
Mutual Exclusion Producer-Consumer Problem Readers-Writers Problem Dining-Philosophers

F. Bellosa – Betriebssysteme WT 2016/2017 8a/33



Producer-Consumer Problem

void producer()
{

Item newItem;

for(;;) // ever
{

newItem = produce();

if( count == MAX_ITEMS )
sleep();

insert( newItem );
count++;

if( count == 1 )
wake_up( consumer );

}
}

void consumer()
{

Item item;

for(;;) // ever
{

if( count == 0 )
sleep();

item = remove();
count--;

if( count == MAX_ITEMS - 1 )
wake_up( producer );

consume( item );

}
}

Race condition on count as demonstrated in last lecture

Classic Synchronization Problems Deadlocks
Mutual Exclusion Producer-Consumer Problem Readers-Writers Problem Dining-Philosophers

F. Bellosa – Betriebssysteme WT 2016/2017 8/33



Non-Solution with mutex

void producer()
{

Item newItem;

for(;;) // ever
{

newItem = produce();

if( count == MAX_ITEMS )
sleep();

mutex_lock( &lock );
insert( newItem );
count++;
mutex_unlock( &lock );
if( count == 1 )

wake_up( consumer );

}
}

void consumer()
{

Item item;

for(;;) // ever
{

if( count == 0 )
sleep();

mutex_lock( &lock );
item = remove();
count--;
mutex_unlock( &lock );
if( count == MAX_ITEMS - 1 )

wake_up( producer );

consume( item );

}
}

Classic Synchronization Problems Deadlocks
Mutual Exclusion Producer-Consumer Problem Readers-Writers Problem Dining-Philosophers

F. Bellosa – Betriebssysteme WT 2016/2017 9a/33



Non-Solution with mutex

void producer()
{

Item newItem;

for(;;) // ever
{

newItem = produce();

if( count == MAX_ITEMS )
sleep();

mutex_lock( &lock );
insert( newItem );
count++;
mutex_unlock( &lock );
if( count == 1 )

wake_up( consumer );

}
}

void consumer()
{

Item item;

for(;;) // ever
{

if( count == 0 )
sleep();

mutex_lock( &lock );
item = remove();
count--;
mutex_unlock( &lock );
if( count == MAX_ITEMS - 1 )

wake_up( producer );

consume( item );

}
}

if statements can still be racy

Classic Synchronization Problems Deadlocks
Mutual Exclusion Producer-Consumer Problem Readers-Writers Problem Dining-Philosophers

F. Bellosa – Betriebssysteme WT 2016/2017 9/33



Another non-Solution with mutex

void producer()
{

Item newItem;

for(;;) // ever
{

newItem = produce();
mutex_lock( &lock );
if( count == MAX_ITEMS )

sleep();

insert( newItem );
count++;

if( count == 1 )
wake_up( consumer );

mutex_unlock( &lock );
}

}

void consumer()
{

Item item;

for(;;) // ever
{ mutex_lock( &lock );

if( count == 0 )
sleep();

item = remove();
count--;

if( count == MAX_ITEMS - 1 )
wake_up( producer );

mutex_unlock( &lock );
consume( item );

}
}

Classic Synchronization Problems Deadlocks
Mutual Exclusion Producer-Consumer Problem Readers-Writers Problem Dining-Philosophers

F. Bellosa – Betriebssysteme WT 2016/2017 10a/33



Another non-Solution with mutex

void producer()
{

Item newItem;

for(;;) // ever
{

newItem = produce();
mutex_lock( &lock );
if( count == MAX_ITEMS )

sleep();

insert( newItem );
count++;

if( count == 1 )
wake_up( consumer );

mutex_unlock( &lock );
}

}

void consumer()
{

Item item;

for(;;) // ever
{ mutex_lock( &lock );

if( count == 0 )
sleep();

item = remove();
count--;

if( count == MAX_ITEMS - 1 )
wake_up( producer );

mutex_unlock( &lock );
consume( item );

}
}

One cannot work while the other sleeps with lock held (deadlock)

Classic Synchronization Problems Deadlocks
Mutual Exclusion Producer-Consumer Problem Readers-Writers Problem Dining-Philosophers

F. Bellosa – Betriebssysteme WT 2016/2017 10/33



Final non-Solution with mutex

void producer()
{ [...]

for(;;) // ever
{

newItem = produce();
mutex_lock( &lock );
if( count == MAX_ITEMS )
{

mutex_unlock( &lock );
sleep();
mutex_lock( &lock );

}
insert( newItem );
count++;

if( count == 1 )
wake_up( consumer );

mutex_unlock( &lock );
}

}

void consumer()
{ [...]

for(;;) // ever
{ mutex_lock( &lock );

if( count == 0 )
{

mutex_unlock( &lock );
sleep();
mutex_lock( &lock );

}

item = remove();
count--;

if( count == MAX_ITEMS - 1 )
wake_up( producer );

mutex_unlock( &lock );
consume( item );

}
}

Classic Synchronization Problems Deadlocks
Mutual Exclusion Producer-Consumer Problem Readers-Writers Problem Dining-Philosophers

F. Bellosa – Betriebssysteme WT 2016/2017 11a/33



Final non-Solution with mutex

void producer()
{ [...]

for(;;) // ever
{

newItem = produce();
mutex_lock( &lock );
if( count == MAX_ITEMS )
{

mutex_unlock( &lock );
sleep();
mutex_lock( &lock );

}
insert( newItem );
count++;

if( count == 1 )
wake_up( consumer );

mutex_unlock( &lock );
}

}

void consumer()
{ [...]

for(;;) // ever
{ mutex_lock( &lock );

if( count == 0 )
{

mutex_unlock( &lock );
sleep();
mutex_lock( &lock );

}

item = remove();
count--;

if( count == MAX_ITEMS - 1 )
wake_up( producer );

mutex_unlock( &lock );
consume( item );

}
}

Still racy and can cause signal loss
Classic Synchronization Problems Deadlocks
Mutual Exclusion Producer-Consumer Problem Readers-Writers Problem Dining-Philosophers

F. Bellosa – Betriebssysteme WT 2016/2017 11/33



Condition Variables
Problem can be solved with a mutex and 2 counting semaphores

Hard to understand
Hard to get right
Hard to transfer to other problems

Condition Variables (CV) allow blocking until a condition is met

Condition variables are usually suitable for the same problems but they
are much easier to “get right”

Idea:
New operation that performs unlock, sleep, lock atomically
New wake-up operation that is called with lock held

Þ Simple mutex lock/unlock around CS + no signal loss

Classic Synchronization Problems Deadlocks
Mutual Exclusion Producer-Consumer Problem Readers-Writers Problem Dining-Philosophers

F. Bellosa – Betriebssysteme WT 2016/2017 12/33



Pthread Condition Variables

Pthread CV call Description
pthread cond init Create and initialize a new CV
pthread cond destroy Destroy and free an existing CV
pthread cond wait Block waiting for a signal
pthread cond timedwait Block waiting for a signal or timer
pthread cond signal Signal another thread to wake up
pthread cond broadcast Signal all threads to wake up

Classic Synchronization Problems Deadlocks
Mutual Exclusion Producer-Consumer Problem Readers-Writers Problem Dining-Philosophers

F. Bellosa – Betriebssysteme WT 2016/2017 13/33



Solution with Condition Variables
Two condition variables: more and less

void producer()
{
Item newItem;

for(;;) // ever
{

newItem = produce();

mutex_lock( &lock );
while( count == MAX_ITEMS )

cond_wait( &less, &lock );

insert( newItem );
count++;

cond_signal( &more );
mutex_unlock( &lock );

}
}

void consumer()
{

Item item;

for(;;) // ever
{

mutex_lock( &lock );
while( count == 0 )
cond_wait( &more, &lock );

item = remove();
count--;

cond_signal( &less );
mutex_unlock( &lock );

consume( item );
}

}

Classic Synchronization Problems Deadlocks
Mutual Exclusion Producer-Consumer Problem Readers-Writers Problem Dining-Philosophers

F. Bellosa – Betriebssysteme WT 2016/2017 14/33



Readers-Writers Problem

Problem: Model access to shared data structures
Many threads compete to read or write the same data
Readers only read the data set; they do not perform any updates
Writers can both read and write

Using a single mutex for read and write operations is not a good
solution, as it unnecessarily blocks out multiple readers while no writer
is present

Idea: Locking should reflect different semantics
for reading data and for writing data

If no thread writes, multiple readers may be present
If a thread writes, no other readers and writers are allowed

Classic Synchronization Problems Deadlocks
Mutual Exclusion Producer-Consumer Problem Readers-Writers Problem Dining-Philosophers

F. Bellosa – Betriebssysteme WT 2016/2017 15/33



1st Readers-Writers Problem: Readers Preference

No reader should have to wait if other readers are already present

void writer()
{

for(;;) // ever
{

// generate data to write

wait( write_lock );

// write data

signal( write_lock );
}

}

Writers cannot acquire
write lock until the last reader
leaves the critical section

void reader()
{

for(;;) // ever
{

mutex_lock( &rc_lock );
readerscount++ ;
if( readerscount == 1 )

wait( &write_lock );
mutex_unlock( &rc_lock );

// read data

mutex_lock( &rc_lock );
readerscount--;
if (readerscount == 0)

signal( &write_lock );
mutex_unlock( &rc_lock );

}
}

Classic Synchronization Problems Deadlocks
Mutual Exclusion Producer-Consumer Problem Readers-Writers Problem Dining-Philosophers

F. Bellosa – Betriebssysteme WT 2016/2017 16/33



2nd Readers-Writers Problem: Writers Preference

No writer shall be kept waiting longer than absolutely necessary

Code is analogous to 1st readers-writers problem but with separate
readers- and writers-counts

Read “Concurrent Control with Readers and Writers” by Randell if you
are interested in code for a solution

1st and 2nd readers-writers problem have the same issue:
Readers preference Þ writers can starve
Writers preference Þ readers can starve

Classic Synchronization Problems Deadlocks
Mutual Exclusion Producer-Consumer Problem Readers-Writers Problem Dining-Philosophers

F. Bellosa – Betriebssysteme WT 2016/2017 17/33



3rd Readers-Writers Problem: Bounded Waiting

No thread shall starve

POSIX threads contains readers-writers locks to address this issue

Pthread Mutex call Description
pthread rwlock init Create and initialize a new RW lock
pthread rwlock destroy Destroy and free an existing RW lock
pthread rwlock rdlock Block until reader lock acquired
pthread rwlock wrlock Block until writer lock acquired
pthread rwlock unlock Leave critical section

Multiple readers but only a single writer are let into the CS

If readers are present while a writer tries to enter the CS then
don’t let further readers in
block until readers finish
let writer in

Classic Synchronization Problems Deadlocks
Mutual Exclusion Producer-Consumer Problem Readers-Writers Problem Dining-Philosophers

F. Bellosa – Betriebssysteme WT 2016/2017 18/33



POSIX Readers-Writers Locks

Readers-writers locks make solving the 3rd readers-writers problem a
non-issue. . .

void writer()
{

for(;;) // ever
{

rwlock_wrlock( rw_lock );

// write data

rwlock_unlock( rw_lock );
}

}

void reader()
{

for(;;) // ever
{

rwlock_rdlock( rw_lock );

// read data

rwlock_unlock( rw_lock );
}

}

. . . unless you have to implement the readers-writers locks

Classic Synchronization Problems Deadlocks
Mutual Exclusion Producer-Consumer Problem Readers-Writers Problem Dining-Philosophers

F. Bellosa – Betriebssysteme WT 2016/2017 19/33



Dining-Philosophers Problem

Cyclic workflow of 5 philosophers
1. Think
2. Get hungry
3. Grab for one chopstick
4. Grab for other chopstick
5. Eat
6. Put down chopsticks

Ground rules
No communication
No “atomic” grabbing of
both chopsticks
No wrestling

Models threads competing for limited number of resources
(e.g., I/O devices)

Classic Synchronization Problems Deadlocks
Mutual Exclusion Producer-Consumer Problem Readers-Writers Problem Dining-Philosophers

F. Bellosa – Betriebssysteme WT 2016/2017 20/33



Dining-Philosophers Problem
Naı̈ve solution with mutex t chopstick[5] representing the chopsticks

What happens if all philosophers grab their left chopstick at once?

void philosopher( int i )
{

for(;;) // ever
{

mutex_lock( chopstick[i] );
mutex_lock( chopstick[(i + 1) % 5] );
// eat
mutex_unlock( chopstick[i] );
mutex_unlock( chopstick[(i + 1) % 5] );
// think

}
}

Deadlock workarounds
Just 4 philosophers allowed at a table of 5 (example for deadlock avoidance)
Odd philosophers take left chopstick first, even philosophers take right
chopstick first (example for deadlock prevention)

Classic Synchronization Problems Deadlocks
Mutual Exclusion Producer-Consumer Problem Readers-Writers Problem Dining-Philosophers

F. Bellosa – Betriebssysteme WT 2016/2017 21/33



Deadlocks

Classic Synchronization Problems Deadlocks
Deadlock Conditions Deadlock Prevention Deadlock Avoidance Detection Recovery

F. Bellosa – Betriebssysteme WT 2016/2017 22/33



Deadlock Conditions

Deadlocks can arise if all four conditions hold simultaneously:

1. Mutual exclusion
Limited access to resource
Resource can only be shared with a finite amount of users

2. Hold and wait
Wait for next resource while already holding at least one

3. No preemption
Once the resource is granted, it cannot be taken away but only handed back
voluntarily

4. Circular wait
Possibility of circularity in graph of requests

Classic Synchronization Problems Deadlocks
Deadlock Conditions Deadlock Prevention Deadlock Avoidance Detection Recovery

F. Bellosa – Betriebssysteme WT 2016/2017 23/33



Example: Deadlock Conditions

1. Only one
intersection

2. Cars block part of
the intersection
while waiting for the
rest

3. Cars don’t diminish
into thin air

4. Every one of the
four sides waits for
the cars that come
from the right to
give way

Classic Synchronization Problems Deadlocks
Deadlock Conditions Deadlock Prevention Deadlock Avoidance Detection Recovery

F. Bellosa – Betriebssysteme WT 2016/2017 24/33



Deadlock countermeasures

Three approaches to dealing with deadlocks:

Prevention
Pro-active, make deadlocks impossible to occur

Avoidance
Decide on allowed actions based on a-priori knowledge

Detection
React after deadlock happened (recovery)

Classic Synchronization Problems Deadlocks
Deadlock Conditions Deadlock Prevention Deadlock Avoidance Detection Recovery

F. Bellosa – Betriebssysteme WT 2016/2017 25/33



Deadlock Prevention

Negate at least one of the required deadlock conditions:

1. Mutual exclusion
Buy more resources, split into pieces, virtualize → “infinite” # of instances

2. Hold and wait
Get all resources en-bloque
2-phase-locking

3. No preemption
Virtualize to make preemptable

virtual vs. physical memory
spooling (printer)

4. Circular wait
Ordering of resources
Prevent deadlocks with partial order on resources!

E.g., always acquire mutex m1 before m2

Classic Synchronization Problems Deadlocks
Deadlock Conditions Deadlock Prevention Deadlock Avoidance Detection Recovery

F. Bellosa – Betriebssysteme WT 2016/2017 26/33



Deadlock Avoidance

If a system is in safe state
Þ no deadlocks

If a system is in unsafe state
Þ deadlocks possible

Deadlock Avoidance
On every resource request:
decide if system stays in
safe state

Needs a-priori information
(e.g., max resources needed)
Resource Allocation Graph

Classic Synchronization Problems Deadlocks
Deadlock Conditions Deadlock Prevention Deadlock Avoidance Detection Recovery

F. Bellosa – Betriebssysteme WT 2016/2017 27/33



Resource Allocation Graph (RAG)

View system state as graph
Processes are round nodes
Resources are square nodes

Every instance of a resource is depicted as a dot in the resource node

Resource requests and assignments are edges
Resource pointing to process means:
Resource is assigned to processes

Process pointing to resource means:
Process is requesting resource

Process may request resource:
Claim edge, depicted as dotted line
(without claim edges only one
point in time depictable)

Classic Synchronization Problems Deadlocks
Deadlock Conditions Deadlock Prevention Deadlock Avoidance Detection Recovery

F. Bellosa – Betriebssysteme WT 2016/2017 28/33



Deadlock Detection
Allow system to enter deadlock Þ detection Þ recovery scheme

Maintain Wait-For Graph (WFG)
Nodes are processes
Edge represents “wait for” relationship (Like RAG, but without resources)

Periodically invoke an algorithm that searches for a cycle in the graph
If there is a cycle, there exists a deadlock

Classic Synchronization Problems Deadlocks
Deadlock Conditions Deadlock Prevention Deadlock Avoidance Detection Recovery

F. Bellosa – Betriebssysteme WT 2016/2017 29/33



Recovery from Deadlock: Process Termination

Abort all deadlocked processes

Abort one process at a time until the deadlock cycle is eliminated

In which order should we choose to abort?
Priority of the process
How long process has computed, and how much longer to completion
Resources the process has used
Resources process needs to complete
How many processes will need to be terminated
Is process interactive or batch?

Classic Synchronization Problems Deadlocks
Deadlock Conditions Deadlock Prevention Deadlock Avoidance Detection Recovery

F. Bellosa – Betriebssysteme WT 2016/2017 30/33



Recovery from Deadlock: Resource Preemption

Selecting a victim
Minimize cost

Rollback
Perform periodic snapshots
Abort process to preempt resources

Þ Restart process from last safe state

Starvation
Same process may always be picked as victim

Þ Include number of rollbacks in cost factor

Classic Synchronization Problems Deadlocks
Deadlock Conditions Deadlock Prevention Deadlock Avoidance Detection Recovery

F. Bellosa – Betriebssysteme WT 2016/2017 31/33



Summary

Classical synchronization problems model synchronization problems
that occur in reality

Producer-Consumer Problem: Shared use of buffers/queues
Readers-Writers Problem: Shared access to data structures
Dining Philosophers: Competition for limited resources

Such synchronization problems occur very often when programming
operating systems

The parallelism introduced by multiple processors and the concurrency
introduced by multiprogramming needs to be considered carefully when
writing an OS

Poorly synchronized code can lead to starvation, priority inversion, or
deadlocks

Classic Synchronization Problems Deadlocks

F. Bellosa – Betriebssysteme WT 2016/2017 32/33



Further Reading

Tanenbaum/Bos, “Modern Operating Systems”, 4th Edition:
Pages 119–148
Pages 167–173
Chapter 6

Stevens, Rago: Advanced Programing in the UNIX Environment:
Pages 367–386

Classic Synchronization Problems Deadlocks

F. Bellosa – Betriebssysteme WT 2016/2017 33/33


	08. Practical Synchronization by Example
	Classic Synchronization Problems
	Mutual Exclusion
	Producer-Consumer Problem
	Readers-Writers Problem
	Dining-Philosophers

	Deadlocks
	Deadlock Conditions
	Deadlock Prevention
	Deadlock Avoidance
	Detection
	Recovery



